If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3s^2-5=0
a = 3; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·3·(-5)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{15}}{2*3}=\frac{0-2\sqrt{15}}{6} =-\frac{2\sqrt{15}}{6} =-\frac{\sqrt{15}}{3} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{15}}{2*3}=\frac{0+2\sqrt{15}}{6} =\frac{2\sqrt{15}}{6} =\frac{\sqrt{15}}{3} $
| 3.4s=12.58 | | X-8÷3=x-3÷5 | | 8(x-1)=12x | | 1.7j-4.7=2.44 | | x-5/12=18 | | 22x+8=-6x-20 | | x-0.1x=7400 | | x+(x*18/100)=26.20 | | 2m^2-3m+5=0 | | 1.7j-4.7=2.4 | | 3e+33=7e-3 | | 343^x-5=49^x-3 | | 4w+8=18 | | 12x-5x+42+3x-6=19x-18 | | 5+2x=4x+13 | | 6X^2-82x+120=0 | | 0.8(x+1)=1.2 | | 4(2x-3)+4=-3(x+5) | | 6(1x+4)=-36 | | 3•5+x=2•2•2•3 | | -3x+2=4x-27 | | -3x+2=4x-24 | | -4(5+6x)=-236 | | -2(7+3x)=-80 | | 2(-3x-6)=-18 | | 4x+2=26+3x | | 4x+11=7x+32 | | z^2-3z=-5 | | 5a-2=9a+8 | | a^2+18a+93=0 | | 2(5x+3)=6x | | 8x+15=-30 |